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Subsystem functionals in density-functional theory: Investigating the exchange energy per particl

R. Armiento*
Department of Physics, Royal Institute of Technology, Stockholm Center for Physics, Astronomy and Biotechnology,

SE-106 91 Stockholm, Sweden

A. E. Mattsson†

Surface and Interface Sciences Department MS 1415, Sandia National Laboratories, Albuquerque, New Mexico 87185-14
~Received 7 June 2002; published 31 October 2002!

A viable way of extending the successful use of density-functional theory into studies of even more complex
systems than are addressed today has been suggested by Kohn and Mattsson@W. Kohn and A. E. Mattsson,
Phys. Rev. Lett.81, 3487 ~1998!; A. E. Mattsson and W. Kohn, J. Chem. Phys.115, 3441 ~2001!#, and is
further developed in this work. The scheme consists of dividing a system into subsystems and applying
different approximations for the unknown~but general! exchange-correlation energy functional to the different
subsystems. We discuss a basic requirement on approximative functionals used in this scheme; they must all
adhere to a single explicit choice of the exchange-correlation energy per particle. From a numerical study of a
model system with a cosine effective potential, the Mathieu gas, and one of its limiting cases, the harmonic
oscillator model, we show that the conventional definition of the exchange energy per particle cannot be
described by an analytical series expansion in the limit of slowly varying densities. This indicates that the
conventional definition is not suitable in the context of subsystem functionals. We suggest alternative defini-
tions and approaches to subsystem functionals for slowly varying densities and discuss the implications of our
findings on the future of functional development.
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I. INTRODUCTION

In density-functional theory1 ~DFT! the total electron en-
ergy Ee is written as a formally exact functional of a give
~arbitrary! ground-state electron density. The total electr
energy for a system with an external potentialv(r ) is then
found as the minimum ofEe , occurring for the true ground
state electron densityn(r ) of the system. The Kohn-Sham
~KS! formulation2 of DFT casts the search for this minimu
into a self-consistency calculation of a problem of nonint
acting electrons moving in an effective potentialveff(r ). The
effective potential has been constructed to make the f
electron density of the resulting free-electron orbitals, theKS
electron orbitalscn(r ), give the soughtn(r ). In a spin un-
polarized system,

n~r !52(
n

ucn~r !u2 ~1!

~where the sum is taken over all occupied orbitals!.
Within KS DFT the total electron energy functionalEe is

divided into classical contributions and a remaining part,
exchange correlation energy Exc . In order to decomposeExc
into local contributions, theexchange correlation energy pe
particle exc is defined as a density functional which gives t
total exchange correlation energy as

Exc5E n~r !exc~r ;@n# !dr . ~2!

This implicit definition ofexc is not unambiguous. All trans
formations preserving the value of the total integral yie
possible choices ofexc . Equivalently expressed, two corre
exc are equal apart from an additive function that, multipli
0163-1829/2002/66~16!/165117~17!/$20.00 66 1651
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with n(r ), integrates to zero over the whole system. This
an important property that we explore in this paper.

A suitable approximation of some choice ofexc(r ;@n#) is
needed to use KS DFT in calculations. One such approxi
tive functional put forward in the earliest works of DFT wa
the local-density approximation2 ~LDA !. It was aimed at sys-
tems with very slowly varying electron densities, but w
remarkably successful for wider use. LDA setsexc in every
space pointr , with densityn(r ), equal toExc per electron of
a system with a constantveff ~a uniform electron gas! chosen
such that the density of the uniform system equalsn(r ). In
this way LDA uses as input only the local value of the de
sity and can be written asexc

LDA
„n(r )…. Newer functionals,

generalized gradient approximations~GGA’s!, use, apart
from the local value of the density, also the first-order de
sity derivative ~the gradient!: exc

GGA
„n(r ),u¹n(r )u…. Further

functional development such as meta-GGA’s, use additio
parameters not always trivially related to the density, e
kinetic energy densities.

The successively refined approximations ofexc(r ;@n#)
described above all take the slowly varying density as th
starting points. The aim has been to create a single unive
functional useful for all kinds of systems, but the resulti
functionals tend to fail in the parts of the system where
density is far from homogeneous, e.g., at surfaces.3–5 In con-
trast to this practice of developing universal functiona
Kohn and Mattsson6 ~KM ! worked towards a functional spe
cifically designed to handle the edge part of a system. T
suggested that this functional could be used together w
another functional taking care of the interior region of t
system. A more generalized idea of using different functio
als in different regions of a system is illustrated in Fig.
©2002 The American Physical Society17-1
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R. ARMIENTO AND A. E. MATTSSON PHYSICAL REVIEW B66, 165117 ~2002!
Functionals used in this way must all adhere to a sin
explicit choice of the exchange-correlation energy per p
ticle. This is an important requirement that is discussed
this paper.

KM introduced theedge electron gasas a suitable starting
point for a functional to use in the edgelike part of a syste
The simplest possible model of the edge electron gas,
Airy gas, has a linear effective potential and features wa
functions transitioning from oscillatory to vanishing. A fun
tional based on the Airy gas does not relate the density in
edge subsystem to a slowly varying density, but is inst
based on other assumptions valid only in an appropriate
gion near an edge. Within this region of validity an Airy g
based functional should outperform functionals based on
homogeneous electron gas, but may not be a suitable
proximation in the bulk part or interior of a system.

In a related effort Vitoset al.have developed a functiona
the local Airy gas~LAG!.7 Roughly, it corresponds to usin
the Airy gas exchange energy per particle and the LDA c
relation energy per particle in the edge region, while us
LDA exchange and correlation energies per particle in
interior region. LAG gives mixed results for two reason
First, the LDA correlation functional used in the edge regi
is not compatible8 with the Airy gas exchange functiona
Second, the use of LDA in the interior region is, in ma
cases, inadequate. An Airy gas based correlation functio
and an improved interior region functional are needed
improve on the LAG.

The uniform electron gas and the edge electron gas
not the only interesting starting points for functionals. Oth
alternatives should be used to develop functionals for a la
variety of subsystem classes. Such functionals can eithe
carefully combined by computational scientists target
some specific system, or be composed into more gen
functionals applicable to a general set of problems, such
systems with electronic edges, which was the aim of
original work of KM.6 Functionals derived from alternativ
starting points have already been created, for example
Luttinger liquid systems.9

In addition to the general discussions about the use
functionals in subsystems, this work also addresses the
velopment of a functional suitable for the interior region o
system, where the density is slowly varying. We determin
a specific~the conventional! choice of the exchange energ
per particle can be expressed as a power expansion in

FIG. 1. The generalized idea of dividing a system into su
systems, applying different functionals to the different parts. T
left figure refers to the approach presented by Kohn and Mattsso
Ref. 6.
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density variation. The investigation is based on the Math
gas~MG! model, a noninteracting electron system that mo
els the KS orbitals of an effective potential with a cosine
one of the three dimensions. The MG is presented in de
as its properties are important for the interpretation and
cussion of our results. It shows a rudimentary energy-b
structure and its parameter space range from the free-elec
~FE! gas to a harmonic oscillator~HO! system. From nu-
merical calculations of the MG we show that the conve
tional choice of the exchange energy per particle ha
nonanalytical behavior in the limit of slowly varying dens
ties, and thus this choice cannot be described by an ordin
~analytical! expansion. The behavior indicates that the co
ventional definition of the exchange energy per particle is
a good choice for the derivation of subsystem functiona
Our results also raise concerns for the inclusion of Laplac
terms in functionals outside the scheme of subsystem fu
tionals. The discovered nonanalyticity is argued from ext
sive numerical data for the MG. This presented data mi
also be useful outside of our present work for derivation a
testing of exchange functionals.

In Sec. II, we explain and explore the basic requirem
that suitable subsystem functionals in a divided syst
scheme must all adhere to a single explicit choice of
exchange-correlation energy per particle. This is explic
discussed in the context of the exchange energy per par
in a slowly varying system. In Sec. III, the MG is thorough
presented and its HO limit is recognized as a valuable mo
system in its own right. In Sec. IV the computed densi
density Laplacian, and exchange energy per particle are
lyzed in terms of deviations from their uniform electron g
values, and finite-size oscillations present in the HO-like p
of the MG parameter space are investigated. The deviat
from the uniform gas values for the density and the Lapl
ian are shown to behave as expected, but the computed
viations from the uniform electron gas value for the e
change energy per particle imply that the conventio
definition of the exchange energy per particle must be m
eled by an nonanalytical function of the Laplacian. In Sec
the numerical precision of our data is validated. Finally,
Sec. VI, our findings are summarized and discussed, w
comments on the future development of subsyst
functionals.

II. EXCHANGE ENERGIES PER PARTICLE

The basic idea explored in this work is to divide the int
gration over the whole system in Eq.~2! into suitable parts
and apply different approximations of the exchang
correlation energy per particle,exc(r ,@n#) to each part. Ap-
proximations ofexc(r ,@n#), which can be applied to such
divided system, are referred to assubsystem functionals. In
this section we will discuss requirements a subsystem fu
tional must satisfy.

At this point we are only concerned with the exchan
contribution to the exchange-correlation energy per parti
The exchange and correlation terms are separated in
usual way

exc5ex1ec . ~3!

-
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SUBSYSTEM FUNCTIONALS IN DENSITY-FUNCTIONAL . . . PHYSICAL REVIEW B 66, 165117 ~2002!
The freedom of choice ofexc , as explained in connection t
Eq. ~2!, also makesex nonunique. Similarly as forexc , all
choices ofex must integrate, multiplied with the electro
density, to the same value~the total exchange energyEx ;
Ref. 10 presents several definitions ofEx and discusses how
they relate to different choices ofex). Let ex

irxh be the con-
ventional choice ofex , which was also used for the Airy
gas.6 There exists an exact relation11 between this exchang
energy per particle and the KS orbitals. Using thefirst-order
spinless density matrixr1(r ;r 8) and theinverse radius of the
exchange hole6 ~irxh!, Rx

21 , the relation is expressed in cg
units as

ex
irxh52e2Rx

21~r !/2, ~4!

Rx
21~r !52E nx~r ;r 8!

ur2r 8u
dr 8, ~5!

nx~r ;r 8!52
1

2

ur1~r ;r 8!u2

n~r !
, ~6!

r1~r ;r 8!52(
n

cn~r !cn* ~r 8!, ~7!

where nx(r ;r 8) is the conventional exchange hole dens
ande is the electronic charge.

A. Systems with slowly varying densities

For slowly varying densities, the exchange part of LDA
the most straightforward approximation ofex

irxh(r ;@n#). The
LDA expression is obtained by inserting KS orbitals for
constant effective potential~plane waves! in Eqs. ~4!–~7!,
giving a constantex

irxh , which is parametrized in the uniform
electron density to give the familiar expression

ex
LDA

„n~r !…52e2
3

4p
@3p2n~r !#1/3. ~8!

An improvement to LDA exchange, proposed in the e
liest works on DFT,2 was to use gradient expansions. T
traditional gradient approximation approach results in
second-order gradient expansion approximation~GEA!,

ex
GEA

„n~r !,u¹n~r !u…5ex
LDA

„n~r !…S 11
10

81
s2D , ~9!

wheres is thedimensionless gradient,

s5
u¹n~r !u

2~3p2!1/3n4/3~r !
. ~10!

The correct coefficient, 10/81, of the dimensionless grad
s was finally established by Kleinman and Lee12 in 1988. In
a truly slowly varying system, the GEA performs well, b
outside of its area of formal validity the GEA is found to b
unsatisfactory when applied in computations. Often it is l
accurate than the LDA.13 However, GEA has successfull
16511
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been used in the derivation of modern nonempirical GGAs
the limit of low-density variation, and has led to very usef
functionals.14,15

In addition to the dimensionless gradient term, there
another term that should be included in a general expans
This term is proportional to thedimensionless Laplacian,

q5
¹2n~r !

4~3p2!2/3n5/3~r !
. ~11!

In the following it is explained why this term can be n
glected in GEA and why it is not appropriate to neglect it
the present context of different functionals in different pa
of a system.

By Green’s formula

E
V
n4/3S ¹2n

n5/3
2

1

3

u¹nu2

n8/3 D dV2 R
S
n21/3

]n

]j
dS50, ~12!

where]n/]j is the derivative of the density in the directio
of the outward pointing normal to the surfaceSenclosing the
volumeV. Equation~12!, showing one choice of a function
integrating to zero, can be added to the exchange part of
~2!. Adding the integrand of Eq.~12!, multiplied by a factor
proportional tob, to the GEA, Eq.~9!, the expansion of all
possible analytical exchange energies per particle becom

ex~r ;@n# !5ex
LDA

„n~r !…F11S 10

81
2

b

3D s21bq1•••G ,
~13!

where the surface term always vanishes in practical calc
tions. In a finite system the integration surface is placed
outside the system, where the normal derivative of the d
sity is very small. Furthermore, the integrands at oppo
sides of the surface cancel due to the opposite sign of
directional derivatives of the density. In a periodic system
integrands on opposite sides of the cell also cancel, s
their normals are in opposite directions. Finally, in a divid
system, any surface element on the surfaces enclosing
different parts of the system have another surface elem
with opposite sign that can cancelif the constant b is the
same for the different functionals used. Hence, as long as th
same functional is used in the whole system, the value ob
can be arbitrary. It is traditionally set to zero, motivating th
GGAs need only depend on the gradient and not on the
placian. In a divided system, however, all subsystem fu
tionals used must have the same value ofb. Unfortunately, an
explicit definition of the exchange energy per particle resu
ing in b50 is not known. In the choice between searchi
for such a definition or establishing the value ofb that cor-
responds to the definition in Eqs.~4!–~7! we here choose the
latter.

Turning to our choice of exchange energy per particle,
expansion takes the form

ex
irxh~r ;@n# !5ex

LDA
„n~r !…~11airxhs21birxhq1••• !,

~14!
7-3
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R. ARMIENTO AND A. E. MATTSSON PHYSICAL REVIEW B66, 165117 ~2002!
where the gradient coefficientairxh is expected to be 10/81
2birxh/3, and the Laplacian coefficientbirxh is to be deter-
mined. Since the gradient coefficient is fully determined
the Laplacian coefficient we will only be concerned with t
Laplacian coefficient.

B. General systems

Although only slowly varying systems are explicitly ex
amined in this work, we comment on the extension of s
system functionals to general systems. Above we discus
the requirement that all subsystem exchange functionals
plied to one slowly varying system must have the same va
of the Laplacian coefficientb. The same arguments can b
repeated for all terms in the Taylor expansion, leading to
conclusion that different subsystem exchange functionals
plied to a general system must all be based on the s
explicit definition of the exchange energy per particle. T
point was illustrated by assuming the exchange energy
particle to be analytic. However, it is obvious that analytic
is not required. Hence, to be a subsystem functional, a
exchange-correlation functional must be based on a spe
set of definitions. When the integration in Eq.~2! is divided
into integrations over subsystems, new nonvanishing te
must not be introduced.

III. MATHIEU GAS

The development of exchange-correlation energy fu
tionals has predominately been guided by studies of
model system, the uniform electron gas. For example,
Monte Carlo calculation by Ceperly and Alder16 of the total
energy of uniform gases with different densities is the fou
dation of most correlation functionals in use today, and
exchange energy of the uniform electron gas is the basis
the LDA exchange energy functional.2 Other model systems
like the Airy gas6 and the exponential model,17 have been
studied to expand the understanding of strongly inhomo
neous systems such as surfaces. Sahni and co-workers
model systems, like the step, linear, and finite-linear poten
models, in studies of surfaces.18

One motivation for using model systems is the unifi
development of exchange and correlation functionals. L
performs so well since the LDA exchange and correlat
functionals are ‘‘compatible.’’8 The error in the LDA ex-
change is counterbalanced by the error in the LDA corre
tion, as the combination gives the energy in the unifo
electron gas. This is in contrast to how GGA’s are usua
developed, where the exchange and correlation functio
are constructed separately, as accurately as possible,
little attention is paid to the combined quantity. It is we
known that even though the separate GGA exchange
correlation energies for the jellium surface are much m
accurate that the LDA quantities, the combined quantity
actually more accurate in LDA than in GGA~Ref. 19! @this
is, however, not true20 for the PKZB meta-GGA~Ref. 21!#.
By creating functionals from model systems it is possible
obtain compatible exchange and correlation.

Our aim is to go beyond LDA, basing our study on
model system suitable for interior regions, containing
16511
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slowly varying limit where LDA is appropriate. We seek in
formation about the exchange functional from exploration
yet another model system, the Mathieu Gas~MG!. The MG
is the two-parameter model in which the KS effective pote
tial is described by~Fig. 2!

veff~z!5l2l cos~pz!. ~15!

wherel is the amplitude, andp is the wave vector of the
effective potential. Since we are mainly interested in the L
placian coefficientbirxh in Eq. ~14!, we have chosenz50 to
be at a local minimum in the symmetric effective potenti
The dimensionless gradient in Eq.~10! is always zero at this
point, thus eliminating the gradient term.

The dimensionless parameters of this family of potenti
are l̄5l/m and p̄5p/(2kF,u), wherekF,u

2 52mm/\2 is the
Fermi wave vector of a uniform electron gaswith chemical
potential m. In this work kF,u is considered to be indepen
dent of position.

A system similar to the MG has recently been studied
Nekoveeet al.22 using Monte Carlo methods, but with em
phasis on strongly inhomogeneous densities. As early
1952 Slater studied a potential with cosines in all thr
directions.23 Some of his results are relevant in our conte
and will be repeated here.

A. Exact solution of the MG

Following the general method outlined in Ref. 6,

cn~x,y,z!5
1

A1/2
ei (k1x1k2y)wh~z! ~16!

is inserted into the KS equations2 @n[(k1 ,k2 ,h); kiLi
52pmi ( i 51,2, mi integer!, and A[L1L2 the cross-
sectional area#. The solutions to the resulting equation fo
wh(z),

FIG. 2. The effective potential of the Mathieu Gas~MG!. The
dot marks a minimum point, i.e., one of the points where the
mensionless gradient vanishes. For amplitudes 2l much larger than
the chemical potentialm, the MG approaches the harmonic oscill
tor ~HO! model, whose effective potential is shown as a fat brok
line. The opposite limit is the free-electron~FE! gas. The limiting
case between the HO domain and the FE domain ar
when 2l5m.
7-4
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S 2
\2

2m

d2

dz2
1veff~z!2ehD wh~z!50, ~17!

with veff(z) from Eq. ~15!, can be written in terms o
Mathieu functions,Fh(x). These functions are described
Ref. 24. We use the Bloch, or Floquet, form:

wh~z!5
1

AL3

Fh~ p̄z̄!

5
1

AL3

exp~ ih p̄z̄! (
k52`

`

c2k
h exp~ i2kp̄z̄!, ~18!

whereh p̄kF,uL352pm3 (m3 integer!, L3 thez length of the
system,z̄5kF,uz, and the parameterh is the characteristic
exponent. The coefficientsc2k

h are determined from

~2k1h!2c2k
h 2

l̄

2p̄2
~c2k22

h 1c2k12
h !5aS h,

l̄

2p̄2D c2k
h ,

~19!

and are normalized with(k52`
` uc2k

h u251. These equations

also give the eigenvaluesa„h,l̄/(2p̄2)… used in the energy
The energy of an eigenstate of the MG is

en5
\2

2m
~k1

21k2
2!1eh<m, ~20!

where

eh

m
5l̄1 p̄2aS h,

l̄

2p̄2D . ~21!

Equation~19! can be written in an infinite symmetric ma
trix form. Matrix theory gives that all values o
a„h,l̄/(2p̄2)… are real and bounded from below. The sam
system of equations is recovered while shiftingh by an even
integer. The valuesa„h,l̄/(2p̄2)… also has a6h symmetry.
The indexh have infinite range,2`,h,`, and with each
value one energy and one wave function are associated.
is the extended Brillouin-zone scheme. An alternative is
seth5even integer1z, 21,z<1, and associate an infinit
number of different wave functions and energies with ea
value ofz. This is the reduced Brillouin-zone scheme. No
in the extended scheme, thath5 integer will seemingly pro-
duce two solutions as the6h symmetry coincides with the
even-integer shift symmetry. The issue is resolved by no
that one of the solutions is associated with theh5
2u integeru and the other withh5u integeru. This is further
discussed in association with the energy-band structure o
MG.

Both the Mathieu functions~in their real forms, see Ap-
pendix B! anda(h,Q) are available in numerical compute
software~e.g.,MATHEMATICA !, making it easy to reproduc
most of Slaters results.23
16511
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B. Parameter space

The parameter space of the MG contains two well stud
limiting cases; the weakly perturbed periodic potential@the
free-electron~FE! gas# and the harmonic oscillator~HO!.

The two dimensionless parameters of the MG arel̄ and p̄,
but in discussions of certain properties there are dimens
less combinations that work better, most notably the com

nationsA2l̄ p̄2, in the HO limit, andl̄/ p̄2, when discussing
the energy-band structure. In order to emphasize the
dimensionality of the parameter space we do not introd
new notations for these combinations. In the next secti
the different combinations and their meaning are discuss
We have chosen to use a parameter space spanned byp̄ and
A2l̄ p̄2 as is shown in Fig. 3.

1. Periodic potential and p̄

The parameterp̄ describes the periodicity of the potentia
The vector 2p̄kF,uẑ ~whereẑ is a unit vector in thez direc-
tion! is the reciprocal-lattice vector. Allk-space vectors,
(k1 ,k2 ,h p̄kF,u), with a magnitude of thez component being
a multiple ofp̄kF,u ~i.e., with integerh) lie on Bragg planes.
For a detailed discussion of the weak periodic potential

FIG. 3. The parameter space of the MG. Parameters in
shaded areas correspond to a chemical potential in one of the b
while parameters in the light areas correspond to a chemical po
tial in the free-electron continuum between bands. For comb
tions of parameters on the full lines the chemical potential is a
band edge. Thick lines correspond to the bottom of bands, w
thin lines correspond to the top of bands. For the sake of cla
lines near the origin are not shown. The short-dashed line is
dividing line between the HO domain and the FE domain~see text!
and corresponds to a chemical potential at the maximum of
effective potential~Fig. 2!. For combinations of parameters on
quadratic line the energy-band structure is constant~see Fig. 4 and
text! apart from scaling. From right to left the long-dashed qu

dratic lines correspond tol̄/ p̄250.2, 0.4, 0.8, 20, 40, and 100.
7-5
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R. ARMIENTO AND A. E. MATTSSON PHYSICAL REVIEW B66, 165117 ~2002!
Ref. 25. In the parameter space shown in Fig. 3, lines w
constantp̄ are parallel to the vertical axis.

2. FE gas limit andl̄

As l̄→0, the system of equations in Eq.~19! decouples
and

wh~z!5
1

AL3

exp~ ih p̄z̄!, ~22!

eh

m
5h2p̄2. ~23!

By substitutingk35h p̄kF,u , the plane waves of the uniform
electron gas are recognized.

Lines with constantl̄ are straight and start at the origin
like the short-dashed linel̄51/2, in the parameter spac
shown in Fig 3. The horizontal axis,l̄50, is the FE gas~or
uniform electron gas! limit.

3. HO andA2l̄p̄2

For l̄5l/m→` ~see dashed line in Fig. 2! the occupied
energy levels are well described by a harmonic oscilla
The cosine potential can be expanded aroundz50 to lowest
order,

veff~z!5
lp2

2
z2, ~24!

giving the HO model.
The discrete energy levels in thez direction ink space of

this system are proportional toA2l̄ p̄2,

en

m
5A2l̄ p̄2~2n11!. ~25!

The KS orbitals are

wn~z!5S kF,u~A2l̄ p̄2!1/2

Ap2nn!
D 1/2

Hn„~A2l̄ p̄2!1/2z̄…

3exp„2@~A2l̄ p̄2!1/2z̄#2/2…, ~26!

whereHn(x) are Hermite polynomials24 andn50, 1, 2, . . . .
The vertical axis in the parameter space in Fig. 3 is the

limit and lines with constantA2l̄ p̄2 are parallel to the hori-
zontal axis.

4. Curvature andl̄p̄2

The dimensionless Laplacianq in Eq. ~11! of the mini-
mum~black dot in Fig. 2! is, to first order, proportional to the
curvature there. The~dimensionless! curvature is propor-
tional to l̄ p̄2, as is seen from Eq.~24!.
16511
h
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C. Energy-band structure and l̄Õp̄2

Due to the uniform character of the effective potential
thex andy directions, the MG has a continuous energy sp
trum. @Only the case where the linear dimensions,Li ( i
51,2, and 3), of the system are infinite, i.e.,k space is
dense, is considered.# The density of states at the chemic
potential only depends on the energy-band structure in thz
direction ink space, that is, on the structure ofeh , since for
any eh<m, there is always a free-electron energy additi
that brings the total energy to the chemical potential acco
ing to Eq.~20!. However, the MG does exhibit a rudimenta
band structure due to the Bragg planes in thez direction ofk
space. The characteristic exponenth plays the role of a di-
mensionless scaled wave vector. Energies in the first b
are given by 0,uhu,1, energies in the second band by
,uhu,2, and so on. Note, however, that there are never
band gaps. The chemical potential can be placed in the f
electron continuum between two bands. In Sec. IV it
shown that this band structure influences the quantities
culated for the MG.

Recall thatkF,u is not the magnitude of the Fermi wav
vector of a MG system with chemical potentialm, but that of
the Fermi wave vector of a uniform electron gas with chem
cal potentialm. The Fermi surface for the general MG sy
tem is determined by thek vectors fulfilling en5m in Eq.
~20!.

The energy in Eq.~21! can be scaled in two ways, eac
appropriate for one of the limiting cases:

1

p̄2

eh

m
5

l̄

p̄2
1aS h,

l̄

2p̄2D ——→
l̄/ p̄2→0

h2 ~27!

and

1

A2l̄ p̄2

eh

m

5S l̄

2p̄2D 1/2

1S p̄2

2l̄
D 1/2

aS h,
l̄

2p̄2D ——→
l̄/ p̄2→`

~2n11!,

~28!
wheren is the integer nearest belowuhu.

The FE gas limit is obtained whenl̄/ p̄2→0. For FE like
spectra, scaling according to Eq.~27! is appropriate. The HO
limit is when l̄/ p̄2→` and, for HO-like spectra, scaling ac
cording to Eq.~28! is used. In Fig. 4 we show four scale
energy-band structures.

Apart from scaling, the energy spectra are the same
parameters related by constantl̄/ p̄2 @see Eqs.~27! and~28!#.

In Fig. 3 ~the parameter space spanned byp̄ andA2l̄ p̄2),
long-dashed lines representl̄/ p̄250.2, 0.4, 0.8, 20, 40, and
100. Thex axis corresponds to the FE gas limit,l̄/ p̄250,
and they axis represents the HO model,l̄/ p̄2→`. Note that
l̄/ p̄2 is independent of the chemical potentialm. Fixing the
chemical potential in the energy-band structure selects a
cific point on a line with constantl̄/ p̄2, and thereby sets the
scale of the energy-band structure.

In Fig. 3 the full lines show choices of parameters f
which the chemical potential is placed on an energy level
7-6



e
y
rt
al

ti

t

if-
is

,
he

al
est

be-
l

e

-
nd

he

en

he
and
er

ies.
ro-

el,
ior

the

it

SUBSYSTEM FUNCTIONALS IN DENSITY-FUNCTIONAL . . . PHYSICAL REVIEW B 66, 165117 ~2002!
a band edge. The energy levels of the HO broaden into
ergy bands as the potential becomes weaker and thereb
lows for tunneling between neighboring wells. The sho
dashed line withl̄51/2 marks where the chemical potenti
is equal to the maximum of the effective potential~see Fig.
2!. This line separates HO-like and FE-like systems.

Within a fixed energy structure~wherel̄/ p̄2 is constant! a
FE-like state is always reached when the chemical poten
is raised well above the effective potential~i.e., going to-
wards the origin on a line with a constantl̄/ p̄2 and passing
the short-dashedl̄51/2 line!. This is seen in Fig. 4~c!.

The slowly varying limit is at the origin. In this work
paths with constantl̄/ p̄2 are followed towards the origin, bu
any path towards the origin is equally valid.

The position of the chemical potential relative to the d
ferent energy levelseh is important, and a parameter for th
property is needed. We choose the definition

a5
m2eh1

eh2
2eh1

1uh1u, ~29!

FIG. 4. The energy band structure of selected MG models:~a!

l̄/ p̄250, the FE limit,~b! l̄/ p̄250.8, ~c! l̄/ p̄2520, and~d! l̄/ p̄2

→`, the HO limit. The reduced indexz(21,z<1) is related to
h(2`,h,`) by h5even integer1z.
16511
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where, if m is inside az-dimension energy band,eh1
is the

lowest energy in this band. Ifm is not inside an energy band
eh1

is the lowest energy in the band which contains t

z-dimension energy state with highest energy<m. Further-
more, eh2

is the lowest possible energy of allz-dimension

energy states within bands that only contain energies.m.
By constructionh1 andh2 are integer.

The parametera describes the position of the chemic
potential relative to the lower band edges, that is, the low
energies of the energy bands in thez dimensional energy
band structure. The parametera differs from h in that it
indexes values of the chemical potential both within and
tween the energy bands in thez dimension, making it usefu
throughout the parameter space of the MG. Integera ~lower
band edges! are shown as thick lines in Fig. 3.

In the pure HO modeluh1u approaches the index of th
highest discrete energy level with energy<m. Thus it is easy
to retrieve the~integer! value of this highest index by trun
cating thea parameter. Furthermore, for the HO model a
the FE limit it is straightforward to express thea parameter
in l̄ and p̄ ~wherebxc is the highest integer<x):

aHO5
1

2A2l̄ p̄2
2

1

2
, ~30!

aFE5
1/p̄21N~N11!

2N11
, N5 b 1

p̄ c. ~31!

A similar explicit expression can not be constructed for t
general MG case. After inserting Eq.~21! in Eq. ~29! the
expression cannot be further simplified. In addition, wh
using Eq.~21! for energies of band edges~i.e., integerh, as
is the case here! extra care must be taken not to confuse t
lowest energy in a band with the highest energy in the b
below, corresponding to the two different signs of the integ
h. For nonintegerh both signs give identical energies.

IV. DENSITY, DENSITY LAPLACIAN AND IRXH
EXCHANGE ENERGY PER PARTICLE IN THE MG

In this section we will use the framework of the MG
developed above to examine a number of DFT quantit
The primary purpose of this study is to investigate the p
posed exchange energy per particle expansion of Eq.~14!.
The presentation will be kept on a detailed part by part lev
which is needed to show the true origin of the odd behav
that is found. A higher level summary and discussion of
results is deferred to Sec. VI.

Infinite systems are considered;L1 ,L2 ,L3→`, and thek
vectors,k1 ,k2, andh, are continuous variables. The FE lim
is solved by inserting the plane wave KS orbitals, Eq.~22!
and Eq.~16!, into the definition of the density, Eq.~1!, and
the definition of the exchange energy per particle, Eqs.~4!–
~7!. The well known results are

nu~r !5
kF,u

3

3p2
, ~32!
7-7
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ex,u
irxh~r !52e2

3kF,u

4p
. ~33!

Using Eqs. ~1! and ~4!–~7! we calculate the densitie
nm(r ) and nh(r ) and the exchange energies per parti
ex,m

irxh(r ) and ex,h
irxh(r ) for the MG and the HO, respectively

From the calculated densities, density Laplacians and gr
ents are obtained numerically. Details on numerical meth
and calculational schemes are presented in the appendi

A. Analyzing the results: Expanding around the uniform
electron gas

For clarity parameters directly related to the MG are us
in the analysis and, unless otherwise stated, thez50 point is
considered. Instead of relating the calculated exchange
ergy per particle,ex

irxh , to the LDA values as in Eq.~14! ~i.e.,
relate it to the exchange energy of a uniform electron
with the same density!, it is related to the exchange energy
a uniform electron gas with the same chemical potential.

With a curvature on the potential not only the exchan
energy per particle but also the density and the Laplac
deviate from the uniform electron gas values. To lowest
der

nm~0!5nu~11a1l̄ p̄2!, ~34!

qm~0!5a2l̄ p̄2, ~35!

ex,m
irxh~0!5ex,u

irxh~11a3l̄ p̄2!, ~36!

wherenu andex,u
irxh are given in Eqs.~32! and~33!. From Eq.

~8! it then follows that

birxh5
a32a1/3

a2
. ~37!

The prefactorsa1 ,a2, anda3 remain to be determined.

B. Determination of the coefficient of density deviation,a1

We first examine the quantity

@nm~0!/nu21#

l̄ p̄2
——→
l̄ p̄2→0

a1 . ~38!

Figure 5 shows this density deviation of the MG, at the mi
mum point, from a uniform electron gas with the sam
chemical potential scaled with the curvature. In Fig. 6
same data are shown as a contour plot with the energy-b
structure in Fig. 3 superimposed. A dependence of the d
sity deviation on the energy-band structure is evident.

A dramatic change happens in the behavior along the
where the chemical potential is at the potential maximu
l̄51/2, that is, at the line dividing the HO-like and the F
like domains. This change occurs where the chemical po
tial rises above the most distinct discrete energy level
enters a more continuous energy-band structure, once a
illustrating the importance of the energy-band structure
the properties of the system.
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From the data in the FE-like domain the expansion of E
~34! is confirmed witha1521/2 ~Fig. 7!.

Obtaining a1 in the HO model

The independent HO expressions@Eqs. ~25!, ~26!, and
Appendix C# are used to compare the behavior of the H
model with the behavior in the HO-like domain of the MG
The MG model should approach the HO model whenl̄/ p̄2

→`, because the effective potential approaches a harm

FIG. 5. The density deviations in the minimum point of the M

~cf. Fig. 2!, @nm(0)/nu21#/(l̄ p̄2). The quantity is constructed to
give the first Taylor coefficient in an expansion of the MG dens

in the parameterl̄ p̄2, when approaching the limitl̄ p̄250 @cf. Eq.
~34!#. The line dividing the HO and FE domains in the parame
space is also shown. An oscillatory behavior that is connected to
energy-band structure is visible in the HO domain~cf. Fig. 6!.

FIG. 6. The density deviations of the MG superimposed by
energy-band structure. The lighter contour lines are the same q
tity as shown in Fig. 5. The darker contour lines reproduce the b
edges in the MG energy-band structure, as shown in Fig. 3. A
pendence of the density deviations on the energy structur
evident.
7-8
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SUBSYSTEM FUNCTIONALS IN DENSITY-FUNCTIONAL . . . PHYSICAL REVIEW B 66, 165117 ~2002!
oscillator potential. Furthermore, in this limit, the MG e
ergy spectrum approach the energy spectrum of the HO
tem. Hence the MG density in the HO-like limit should a
proach the pure HO density. This is confirmed in Fig.
However, using the limiting procedure in Eq.~38!, conver-
gence to a single value ofa1 is not obtained. The conver
gence is prevented by heavy oscillations, a situation sim
to sin(1/x) in the limit x→0, with a range of limiting values

The sum in the expression for the density, Eq.~A1!, can
be evaluated explicitly atz50, yielding

nh~0!5nuAp~A2l̄ p̄2!3/2

3
~3/A2l̄ p̄224Ne11!Ne

4Ne

~2Ne!!

~Ne! !2
. ~39!

Ne is the number of discrete energy levels with even inden
and energyen<m. Examining Fig. 7, a periodic behavio
with Da52 is seen, where maxima and minima of the o
cillations in the density coincide with integer values ofa,
indicating a strong relationship between the oscillations
the energy-band structure. The limitl̄ p̄2→0 is therefore
taken separately for each point with a fixed relative posit
to two consecutive evena. By defining a number 0<ae
,2 as the smallest number to subtract froma to obtain an
even integer~i.e., ae is the distance ina from the chemical
potential,m, to the highest even energy level<m), Ne can
be expressed as

Ne5
a2ae

2
11, ~40!

FIG. 7. Density deviations vs 1/a for the curves through the

parameter space of the MG with constantl̄/ p̄250.2, 0.4, 0.8, 20,
40, and 100~shown in legends!, corresponding to the long-dashe

lines in Fig. 3. The lighter lines withl̄/ p̄250.2, 0.4, and 0.8 show
density deviations in the maximum pointz5p/p, while the other
curves show the density deviations in the minimum pointz50. The
light oscillatory curve shows the density deviations for the H

model, corresponding to the limitl̄/ p̄2→`. The parametera is
related to the energy-band structure and is defined in Eq.~29!. The
slowly varying limit is approached as 1/a→0. In that limit we find
a1520.5 @cf. Eq. ~38!#.
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which is inserted into Eq.~39!. Using the explicit expression
for a for the HO, Eq.~30!, and keepingae constant, a Taylor

expansion ofnh in A2l̄ p̄2 gives as coefficient for the term
proportional tol̄ p̄2,

a1~ae!52
5

2
16ae23ae

2 . ~41!

This is a parametrization, inae , of the range of possible
limiting values ofa1.

Averaging a1(ae) over 0<ae,2 gives 21/2, i.e., the
same value ofa1 as extracted from the FE domain of th
MG. Oscillations in the HO model are thus superimposed
a curve converging to the same value ofa1 as in the FE
domain.

When a low temperature is introduced by adding the us
temperature factors26 into the KS-orbital system and numer
cally recalculating the density,a1 converges to21/2, as is
seen in Fig. 8. This motivates taking averages overae in the
zero-temperature HO model, or equivalently, averaging o
the position of the chemical potential in the energy-ba
structure, as a way of extracting information valid in mo
realistic cases.

To summarize, the density of the MG model behaves d
ferently in the FE-like and HO-like regions of the parame
space. In the first region the chemical potential is in a F
like energy structure. The density is well behaved, and c
verges toa1521/2. In the second region the chemical p
tential is in a HO-like discretez-dimension energy structure
The density oscillates heavily with the system paramet
Curves withl̄/ p̄2 constant, starting from the HO-like regio
and approaching the slowly varying limit~by going in the
limit l̄ p̄2→0) eventually reach the FE-like region where t
oscillations damp out. In the case of the pure HO syste

FIG. 8. The black line is the density deviation for the HO mod
of a system with a low temperaturekBT50.05m. The light line is
the density deviation for the HO model atkBT50. In the slowly
varying limit we find a1520.5 at nonzero temperature, whic
agrees with the value extracted in Fig. 7.
7-9
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however, the chemical potential is stuck between the end
number of purely discrete energy levels, leaving the osci
tions undamped.

The oscillations present in the HO model~and throughout
the HO-like domain of the MG! are a technical issue at zer
temperature and uninteresting when drawing conclusi
about more realistic systems. When introducing a temp
ture into the HO model, or, equivalently, averaging over
position of the chemical potential, the limiting value ofa1
521/2 is recovered. Note that no artificial finite size is im
posed in our calculations, like using periodic boundary c
ditions or hard walls. The oscillations emerge naturally fro
the discrete energy levels in the HO limit and are pres
also in the non-numerical treatments. Hence, when us
such a simplistic model as the HO to test proposed grad
expansions or for fitting of parameters, some method sim
to our a averages or temperature additions must be use
quench the oscillations and obtain results valid for gene
systems.

C. Determination of the coefficient of Laplacian deviation,a2

Next, we examine

qm~0!

l̄ p̄2
——→
l̄ p̄2→0

a2 , ~42!

where a2523/2 in the FE-like part of parameter spa
~Fig. 9!.

Obtaining a2 in the HO model

In the HO model, the Laplacian of the density has
oscillatory behavior similar to that of the density, as seen
Fig. 9. Forz50, the Laplacian, Eq.~11!, for the HO model
becomes

FIG. 9. Laplacian deviationsq/(l̄ p̄2) vs 1/a for the same pa-
rameters as in Fig. 7. In the slowly varying limit we finda2

521.5 @cf. Eq. ~42!#.
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qh~0!5
4cq

15

~5/A2l̄ p̄2212No23!~2No
21No!

4No

~2No!!

~No! !2

2
8cq

15

~5/A2l̄ p̄2212Ne21!~Ne
22Ne!

4Ne

~2Ne!!

~Ne! !2

2
2cq

3

~3/A2l̄ p̄224Ne11!Ne

4Ne

~2Ne!!

~Ne! !2
, ~43!

cq5S nu

nh~0! D
5/33Ap

4
~A2l̄ p̄2!5/2. ~44!

Ne is the number of discrete energy levels with even indexn,
and No is the number of discrete energy levels with o
index m, such that their energiesen andem<m.

In analogy to ae above, we introduce a parameter
<ao,2 as the smallest number that gives an odd inte
when it is subtracted froma. We get

No5
a2ao

2
1

1

2
. ~45!

The relation betweenao andae is ($x% denotes the decima
part of x)

ao52H ae11

2 J . ~46!

Thus, if ae is constant,ao must also be constant. This rela
tion is based on the equal spacing of the HO energy lev
and thus is only valid in the pure HO model.

Using No(ao) and Ne(ae) and keepingae and ao con-

stant, a Taylor expansion of Eq.~43! in A2l̄ p̄2 gives the
coefficient for the term proportional tol̄ p̄2 as

a2~ae!523~12uae21u!, ~47!

where we have eliminatedao by observing thatae and ao
fulfill 1 1(12ao)22(12ae)

252(12uae21u) in the inter-
val of their definition. Averaginga2(ae) over 0<ae,2
gives23/2, i.e., the same as the value ofa2 in the FE-like
domain of the MG.

D. Divergence of the coefficient of exchange energy
per particle deviation, a3

When examining

@ex,m
irxh~0!/ex,u

irxh21#

l̄ p̄2
——→
l̄ p̄2→0

a3, ~48!

as in Fig. 10, no convergence to a valuea3 in the limit
l̄ p̄2→0 is observed. This indicates thatex,m

irxh(0) does not

have an analytical expansion inl̄ p̄2, as was assumed in Eq
~36!. In Fig. 10 the same expression but with the LDA e
change energy per particle is also shown. As expected
LDA limiting value is a1/3521/6, which is obtained by
inserting Eq.~34! into Eq. ~8!.
7-10
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a3 in the HO model

In the HO model, not only the characteristic energy str
ture related oscillations are present but also the diverge
seen in the FE-like domain of the MG~Fig. 10!. Since both
the maxima and the minima diverge in thel̄ p̄2→0 limit, the
averaging technique used previously would not cure the
vergence. Nor will the behavior be canceled by the ot
coefficients when composingbirxh according to Eq.~37!.

The divergence of thea3 coefficient does not imply tha
ex,h

irxh itself diverges. In fact,ex
irxh converges to the FE-limit o

Eq. ~33! in both the MG and the pure HO. This indicates th
ex

irxh is not analytical at all points, which we will discuss in

later section. The divergence in the limitl̄ p̄2→0 with l̄/ p̄2

constant, seems to be of logarithmic kind~rather than, for
example,xy with y being a fractional number!. It could be
possible to create a local expansion of such a nonanaly
function, but not as a regular power expansion as Eq.~14!. A
suitable expansion needs one or more nonanalytical te
that tend to zero in the slowly varying limit, likeqloguqu.

E. Analyzing data at the maximum of the potential

The fact that the gradient term in the expansion in E
~14! is zero at the minimum of the potential atz50 was used
above, thus giving direct access to the value ofbirxh. This is
also the case at the maximum of the potential atz5p/p,
which allows us to analyze the results in terms of nega
curvature.

We must, however, compare with the correct unifo
electron gas, having a chemical potentialmmax5m22l.
Thus kF,u in Eqs. ~32! and ~33! should be replaced by

(kF,u)max5kF,uA122l̄, and the negative dimensionless cu
vature must be rescaled according to (l̄ p̄2)max52l̄ p̄2(1
22l̄)22.

FIG. 10. Deviations from the uniform electron gas exchan

energy per particle, (ex
irxh/ex,u

irxh21)/(l̄ p̄2), for the same parameter
as in Figs. 7 and 9. In the slowly varying limit this expression
expected to approach thea3 coefficient in Eq.~48!, but all irxh
curves are diverging and no value can be extracted. For compa
the same expression for the LDA exchange energy per part

(ex
LDA/ex,u

irxh21)/(l̄ p̄2) for l̄/ p̄250.8, is shown.
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Since the limiting procedure of low curvature at the ma
mum point is appropriate only for chemical potentialsm

.2l, or l̄,1/2, data outside the FE-like part of the param
eter space of the MG are not investigated~Fig. 3!.

The three quantities to consider thus are

nm~z5p/p!/@nu~A122l̄ !3#21

2l̄ p̄2~122l̄ !22
, ~49!

qm~z5p/p!

2l̄ p̄2~122l̄ !22
, ~50!

ex,m
irxh~z5p/p!/~ex,u

irxhA122l̄ !21

2l̄ p̄2~122l̄ !22
. ~51!

In Figs. 7, 9, and 10 the data for the maximum points
drawn as light lines. No major differences are seen betw
darker and lighter lines, confirming the symmetry betwe
positive and negative curvature in the density and the
placian, and implying this symmetry for the inverse radius
the exchange hole definition of the exchange energy per
ticle, Eqs.~4!–~7!, at low curvature.

V. COMMENTS ON NUMERICAL RESULTS

Since we only have numerical proof thatbirxh is not well
defined, indicating nonanalyticity of the exchange energy
particle of Eqs.~4!–~7!, the accuracy of our results needs
be considered. As seen in Fig. 10, LDA has converged w
before the irxh curves are in doubt numerically, which is o
indication that the divergence of the irxh curves is not due
numerical errors. We base an estimate of the accuracy of
calculations in the FE-like domain of the MG on an indepe
dent numerical inspection which will be explained in th
section. The estimated errors are presented in Table I.

Not only the prefactor 10/81 in Eq.~9! is known but also
prefactors for higher-order terms.27 While remembering that
these factors are valid only as an expansion of the excha
energy itself, that is, for the expansion integrated toget
with the density according to Eq.~2!, we use this as an in
dependent check of the accuracy of our numerical calc
tions of the exchange energy per particle.

The fourth-order expansion is according to Svendsen
von Barth~SvB!,

ex
SvB5ex

LDAS 11
10

81
s21

146

2025
q22

73

405
s2q10s4D .

~52!

The higher-order prefactors 73/405 and 0 are not exact
the possible errors in these prefactors does not influence
results sinces andq are very small in the FE-like domain o
the MG. For values in the HO-like domain,s and q can be
very large and a comparison with the SvB expression is
adequate.

In Fig. 11 ex
SvB/ex

LDA andex
irxh/ex

LDA are compared over a
half period in the spatial coordinate for one representative

e

on
e,
7-11
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TABLE I. Error estimates for selected points in Fig. 10. The right part of the table refers to Fig. 3 fo
location of the point in the parameter space and to Fig. 11 for the error estimates. The differenceD between

the value ofex
irxh/ex

LDA in z̄50 andz̄p̄5p/2 is included in the table as a measure of the scale on they axis
in Fig. 11. By addingd(ex

irxh/ex
LDA) to the calculated data, the same total exchange energy is obtained a

the SvB expansion, Eq.~52!; see Sec. V and Fig. 11. This corresponds to addingd(ex
irxh/ex,u

irxh)/l̄ p̄2 to the
points in Fig. 10. The third column shows errors for points on the data curves for minima, while the
column shows errors for points on the data curves for the maxima.

l̄/ p̄2 1/a
dSex

irxh~0!

ex,u
irxh D /l̄ p̄2 dS ex

irxhS p

p D
~ex,u

irxh!max

D Y ~ l̄ p̄2!max
p̄ D

dS ex
irxh

ex
LDA D

0.2 0.596 20.0002 0.0002 0.553 22.17931023 2431026

0.2 0.089 20.0116 0.0115 0.089 8.84231026 21.4531027

0.8 0.582 0.0007 20.0003 0.494 28.03531023 3.531025

0.8 0.097 20.0012 0.0012 0.096 4.69231025 2831028

0.8 0.062 0.0113 20.0112 0.062 10.35631026 1.3531027

20 0.075 0.0007 N/A 0.071 5.09131024 331027

20 0.044 0.0024 N/A 0.043 7.65631025 1.631027

100 0.080 0.0155 N/A 0.061 5.26231023 2.231025
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of values ofl̄ and p̄. It is obvious that these two quantitie
can only be compared via the integrated values accordin
the exchange part of Eq.~2!.

The errors in our data points are estimated by compa
the different integrated values, making the following a
sumptions:~i! The numerical errors in the calculation of th
density are negligible, compared with the errors made in
calculation of the exchange energy per particle, since
density calculation is much less complex@compare Eqs.~B2!
and~B3!#. The density is also well behaved as seen in Fig

FIG. 11. Exchange functionals based on different sets of de
tions can only be compared via the total exchange energy give
the exchange part of Eq.~2!. This is evident in the figure where th
SvB exchange energy per particle from Eq.~52! is shown together
with the irxh exchange energy per particle in Eqs.~4!–~7! over a

half period in the spatial coordinate forA2l̄ p̄250.0049 andp̄
50.0621. In order to obtain the same total exchange energy f
the SvB and the irxh exchange energy per particle a uniform
rection of 1.3531027 is needed for the irxh. This is shown with th
full line. The exchange energy obtained from the SvB expansio
Eq. ~52! can be considered exact because of the small param
used in this work.
16511
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This implies that the value of the total exchange ene
based on the SvB expansion in Eq.~52! can be considered a
exact reference value as long ass andq are small.~ii ! Sta-
tistical errors, due to limited internal numerical precision
the computer, are negligible compared with systematic
rors. This is based on the smoothness of the curve join
consecutive points in Fig. 11. If there was a statistical er
the points would be scattered in a band of a width cor
sponding to the statistical error.~iii ! The systematic error is
the same over the entire interval shown in Fig. 11. We h
found no reason why the systematic error should have a
pendence on position. The full line in Fig. 11 was created
adding a uniform systematic error to theex

irxh/ex
LDA curve

chosen to make this curve give the same value of the t
exchange energy as obtained from theex

SvB/ex
LDA curve.

As a further indication that the discovered behavior
correct we note that the two model systems, the MG and
HO, have been treated separately~see Appendixes B and C!
and the divergence is present in both models.

VI. DISCUSSION AND CONCLUSIONS

In the first part of this work we discussed a way, v
subsystem functionals, of extending the successful use
DFT to more complex systems than are addressed today.
basic idea of subsystem functionals is to apply differe
functionals to different parts of a system. This puts the ad
tional constraint on the functionals that they all must adh
to a single explicit choice of the exchange-correlation ene
per particle. A limited subsystemlike scheme has alrea
been implemented and tested.7

To make the scheme of subsystem functionals competi
with current multipurpose functionals, a subsystem fun
tional more accurate than LDA for the slowly varying int
rior part of a system is needed. We address the derivatio
such a functional in the second part of this work by exam
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ing the conventional definition of the exchange energy
particle, Eqs.~4!–~7!, for two specific model systems, th
MG and the HO. We arrive at the general result that
expansion of this exchange energy per particle in the den
variation must contain a nonanalytical function of the dime
sionless Laplacian~if such an expansion exists at all!. Our
numerical results, presented in Figs. 7, 9, and 10, can
summarized as in Fig. 12.

Any attempt to model the exchange energy per part
defined by Eqs.~4!–~7! with an analytical expression will be
futile, in the sense that it will be unable to reproduce t
nonanalytic behavior found in the slowly varying limit of th
MG. This issue needs to be considered also outside the
text of subsystem functionals, particularly when Laplac
terms are included in GGA-type functionals. The gene
scheme of subsystem functionals is unaffected by
nonanalyticity, but it makes the construction of a subsyst
functional for systems with slowly varying densities le
straightforward. Most importantly it indicates that the co
ventional ~irxh! definition of the exchange energy is not
good choice for the derivation of subsystem functionals.

The established nonanalytical behavior is consist
throughout the wide variety of systems encompassed by
MG model. The MG includes both the finite system of t
HO and the extended system of the weakly perturbed p
odic potential, two very dissimilar systems. A function
based on the results for the MG can potentially becom
true multipurpose functional useful for atoms, molecul
and bulk systems.

Nonanalytical behavior and improper coefficients ha
appeared in previous work28 regarding the same exchang
energy per particle, but only in such a way that it is unkno

FIG. 12. The quantity (ex
irxh/ex

LDA21)/q vs 1/a for the same
parameters as in Figs. 7, 9, and 10, summarizing the data pres
in these plots. In the limit of slowly varying densities, 1/a→0, this
quantity is expected to approach the Laplacian coefficient of
conventional~irxh! exchange energy per particle,birxh, but the di-
vergence found in Fig. 10 prevents convergence and thus no
coefficient exist. We thus conclude, in Sec. VI, that the irxh e
change energy per particle can not be expanded in the density v
tion as suggested in Eq.~14!, which indicates that it is not a goo
choice when deriving subsystem functionals, which need to ad
to an explicit choice used throughout the whole system.
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whether the difficulties found were caused by problems w
the exchange energy per particle or due to other issues~such
as in which order the limits have been taken!. In contrast, our
results show how the unscreened, zero-temperature exp
sions themselves raise difficulties.

We suspect the long Coulomb tails to be responsible
the nonanalytic behavior of the exchange energy per part
The nonanalyticity should disappear if screening is int
duced. This can be done by using a Yukawa potentia
place of the Coulomb potential in Eq.~5!. Another way of
taking the screening into account is to perform a f
random-phase approximation~RPA! calculation.

In conclusion, we have found that for the creation of
expansion for subsystem functionals of the exchange en
per particle in the density variation, i.e., to go beyond t
LDA exchange in a subsystem, there are two options. Eit
the nonanalytical function of the dimensionless Laplac
must be found and included in a density functional based
the irxh exchange energy per particle, Eqs.~4!–~7!, or an
alternative definition of the exchange energy per parti
must be chosen. Alternative definitions have be
suggested10 and we plan to continue our investigation b
examining if any of these can give an exchange energy
particle that can be expanded in a Taylor series. Note, h
ever, that most~if not all! of the exact conditions that ar
used when constructing an exchange functional in the tr
tional way are based on the definition in Eqs.~4!–~7!. New
similar conditions need to be constructed if another defi
tion is used. Some such conditions on alternative definiti
have already been derived.29 As a final remark we note tha
the origin of the division of the exchange-correlation ener
into an exchange and a correlation part is based on
Hartree-Fock method that treats exchange only. In DFT
division is artificial. An alternative way to proceed could b
to either divide the exchange-correlation energy in anot
way or to not divide it at all.
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APPENDIX A: GENERAL COMPUTATIONAL FORMULAS

The density and the inverse radius of the exchange h
defined in Eqs.~1! and ~5! respectively, are computed ac
cording to the formulas in Ref. 6 where thex andy dimen-
sions in both real and reciprocal space are integrated out.
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R. ARMIENTO AND A. E. MATTSSON PHYSICAL REVIEW B66, 165117 ~2002!
completeness these formulas are restated here, in a more
eral form,

n~z!52(
h

uwhu2wh , wh5
m

2p\2
~m2eh! ~A1!

and

ex
irxh~r !52

e2

2pn~z!
E dz8(

h
(
h8

wh~z!wh* ~z8!wh8
* ~z!

3wh8~z8!~Dz!23g~khDz,kh8Dz!, ~A2!

g~r ,r 8!5rr 8E
0

` J1~rt !J1~r 8t !

tA11t2
dt, ~A3!

wherekh5@2m(m2eh)/\2#1/2; Dz5uz2z8u; and the sums
in Eqs.~A1! and~A2! should be taken over allh of occupied
orbitals in the zero-temperature ground state.

Calculation of g„r ,r 8…

To calculate numerical values ofg(r ,r 8) a method for
calculating Bessel functions,J1(x) is needed. We use th
algorithm described in Ref. 30, as implemented in Ref.
but extended with coefficients for higher accuracy.

The g(r ,r 8) function has a long oscillating tail, which i
handled by separating it into two terms:

g~r ,r 8!

rr 8
5E

0

` J1~rt !J1~r 8t !

t2
dt1E

0

`

J1~rt !J1~r 8t !

3S 1

tAt211
2

1

t2D dt. ~A4!

The first part can be integrated forr .r 8, giving @with K(z)
and E(z) as the complete elliptic integrals of the first an
second kind24#

E
0

` J1~rt !J1~r 8t !

t2
dt

5
2

3r 8p
F ~r 21r 82!ES r 82

r 2 D 2~r 22r 82!KS r 82

r 2 D G .

~A5!

The special caser 5r 8 gives

E
0

` J1
2~rt !

t2
dt5

4r

3p
. ~A6!

The complete elliptic integrals are calculated using
implementations of Ref. 31, modified for higher accura
Numerical integration is still needed for the second integ
in Eq. ~A4!, but the oscillations of this integrand decay mu
faster than the oscillations in the original integrand, a
hence are easier to handle.

The infinite interval of integration is treated by introdu
ing an error bounde and setting it equal to an approximatio
16511
en-
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of the tail integral. The approximation is created by comp
ing a new integrand from the asymptotic behaviors of
integrated functions,

J1~rt ! ——→
t→`

2A 2

prt
cosS rt 23

p

4 D , ~A7!

1

tA11t2
2

1

t2
——→

t→`

2
1

2t4
, ~A8!

but leaving out the cosine as it only superimposes osc
tions and is<1. When integrating this expression fromt0 to
infinity it gives an approximation of the tail integral, which
solved fort0 to give a value for where to end the integratio
over t:

t05
1

~4peArr 8!4
. ~A9!

Details on the method used for the numerical integration
found in Appendix B4.

The speed of the calculation is increased with a look
table for g(r ,r 8). Bicubic interpolation is used, with thre
million lookup points for values ofr and r 8 ranging from 0
to 1200. The points are distributed with a nonlinear transf
mation to increase accuracy for very smallr ,r 8 and whenr is
almost equal tor 8. There is a limiting expression forg(r ,r 8)
for large values ofr and r 8,r that could have been usefu
for the construction of the lookup table:

g~r ,r 8! ——→
r→` S 1

2
2

1

pr D r 82, ~A10!

but this expression has a relative error of as large as 1024 at
the highest values ofr needed in our calculation~about
1000). Since the calculations required a higher precision
expression is not used.

APPENDIX B:
COMPUTATIONAL FORMULAS FOR THE MG

There is a simple relation between the form of Mathi
functions used here, theFh(z) of Eq. ~18!, and the real even
and odd forms of the Mathieu functions,24 ce andse, which
are commonly found in numerical software. Although w
computeFh(z) directly, this relationship is useful for makin
independent verifications:

Fh~z!5cehS z,2
1

2

l̄

p̄2D 1 isehS z,2
1

2

l̄

p̄2D . ~B1!

It was shown in Sec. III A thath enumerates the solution
of different energies, giving a rudimentary band structu
When L3 of Eq. ~18! approaches infinity,h can take any
value from2h̃ to h̃, whereh̃ is the positive number enu
merating the state with largest energyeh̃<m. The energyeh
is a continuous function ofh except at integers, and can b
integrated numerically if formulas that exclude the disco
7-14
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tinuous points are used. Besides the practical issues, the
continuities of eh have no influence on the values of th
integrals, as they only occur at a finite number of sin
points.

The KS orbitals in Eq.~18! can be used to express th
density and the irxh exchange energy per particle as

nm~z!5nup̄
3

2E0

h̃
uFh~ p̄z̄!u2S 12

eh

m Ddh, ~B2!

ex,m
irxh~z!5ex,u

irxh2p̄2
nu

nm~ z̄!
E

2`

`

dz̄8E
0

h̃
dhE

0

h̃
dh8

3Re@Fh~ p̄z̄!Fh* ~ p̄z̄8!#Re@Fh8
* ~ p̄z̄!Fh8~ p̄z̄8!#

3~D z̄!23g~ k̄hD z̄,k̄h8D z̄!, ~B3!

k̄h5A12eh /m, ~B4!

where D z̄5uz̄2 z̄8u5kFDz, and we have usedF2h(z)
5Fh* (z).

Important issues with the computation of these formu
will be treated in the subsections below.

1. Mathieu functions

The algorithm for computing Mathieu functions present
here has similarities with the one presented in Ref. 32,
the code was developed by us. In Sec. III A a Fourier
panded Floquet solution was inserted into the Mathieu
ferential equation, giving a matrix eigenvalue equation
scribing the solutions, Eq.~19!. To solve this equation
numerically the matrix must be truncated at some finite s
2K11. We based the choice ofK for a given h on the
numerical testing performed in Ref. 32. The eigenvalue pr
lem is solved by regular numerical methods, using the al
rithms from Ref. 31.~We are aware that these implemen
tions are not as efficient and optimized as more special
routines.!

The indexh can be parted into a sum of two terms,
even integer and a reduced index21,z<1, as discussed in
Sec. III A. Solutions with the samez, but with different even
integer parts, show up as solutions with different eigenval
a„h,l̄/(2p̄2)… to the same matrix problem. Solutions fo
negative h are obtained from the relabelingc2k

h →c22k
h .

Hence one single solution of the matrix eigenvalue probl
produces values for allh5even number6uzu.

The routines for the Mathieu functions are also used
determineh̃ from a known chemical potentialm using the
bisection method. Guesses ofh̃ are refined until an energy a
close tom as possible is obtained. There are more effici
ways of determiningh̃ from m, but since this is only done
once per computed data point, the time lost by using bis
tion is negligible.
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2. Integrations over the Mathieu indexh

One solution to the Mathieu matrix equations produc
values for all Mathieu functions withh5even number
6uzu. Because of this, but also as a way to handle the
continuities ofeh whenh is integer, the integrations overh
are parted up~using z̃ as the reduced index ofh̃):

E
0

h̃
f ~h!dh5E

0

u z̃u S (
i 50

A

f ~2i 1z!1(
i 51

B

f ~2i 2z!D dz

1E
u z̃u

1 S (
i 50

C

f ~2i 1z!1(
i 51

D

f ~2i 2z!D dz.

~B5!

For a givenh̃, values forA, B, C, andD must be carefully
chosen to make the right-hand expression constitute
whole interval 0 toh̃. Details on the method used for th
numerical integration are found in Sec. B4.

3. Infinite integration over z̄8

The integrand overz̄8 in Eq. ~B3! is the expression for the
exchange hole divided by a positive distance and thus alw
has the same sign. Furthermore, the doubly infinite integ
tion over all z̄8 is split at z̄, transformed and re-added int
one integration from 0 to infinity, giving slightly more com
plicated arguments in the Mathieu functions.

To handle the infinite interval of integration it is possib
to extract a limiting behavior for thez̄8 integral for the uni-
form electron gas~the same cannot be done for the MG!,
giving a result proportional to 1/z̄83. This result, and numeri-
cal experiments throughout the parameter space of the M
indicate that this is an upper limit on how slowly the osc
lations in the integrand can decay. In the HO-like area of
MG the oscillations die out much more quickly. When a
proaching the FE limit the decay of the oscillations a
proaches the result found for the uniform electron gas. Ba
on this, our method to handle thez integration is to fit a
function of the form const/z̄83 to the behavior of the last par
of the integrand. As the integrand decays like this fitted fu
tion or more quickly, and has a constant sign, two appro
mate values of the total integral appear. The first has
additional const /z̄83 tail added, and the second totally disr
gards any tail contributions. These two values for the integ
are approximations of an upper and lower bound on the
value of the integral. The integration of thez̄8 integral is
halted when these upper and lower bounds are closer tha
accuracy goal set for the integration.

4. Method of numerical integration

An integration algorithm suitable for parallel computers
needed, as the multiple levels of integration in the expr
sions are very time consuming for certain choices of para
eters. There are many nonparallel integration routines av
able, such as theQUADPACK ~Ref. 33! routine ‘‘dqag.’’ The
‘‘dqag’’ routine is intended for integration of oscillatory in
7-15
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tegrands, like those encountered in this work. It handles th
adaptively in the sense that it spends most of the time on
difficult parts of the integrand. For parallel computers the
are only a few commonly available similar adaptive integ
tion routines, as distributing an equal load to each comp
node is difficult.

However, for the integrations encountered in this work
gain of a proper adaptive integration method is limited,
the integrands usually are smooth but heavily oscillati
with a frequency not varying much throughout the interval
integration. This motivates the choice of a more basic al
rithm refining the entire interval of integration at once, whi
makes a parallel implementation easier. The algorithm p
sented here has been developed by us and used in most
calculations.

As all finite ranges can be substituted into the range fr
0 to 1, only this case will be treated. Ordinary integral su
stitution using a function,x5w(x8), fulfilling w(0)50 and
w(1)51, gives

E
0

1

f ~x!dx5E
0

1

f „w~x!…w8~x!dx. ~B6!

We seek an explicit expression forw(x) whose right deriva-
tives, to any order, equals zero asx→10, and whose left
derivatives, to any order, equals zero atx→1. A function
fulfilling these requirements is

w~x!5E
0

x

ce21/(z2z2)dz, w8~x!5ce21/(x2x2), ~B7!

c5S E
0

1

e21/(z2z2)dzD 21

, ~B8!

wherec is chosen to meet the requirementw(1)51.
The integration of the combinationf „w(x)…w8(x) can

now be seen as an integration of one period of a perio
function, as the function values and all derivatives match
x→10 and x→1. For such integrands ordinary trapezo
integration converges very rapidly, since error terms can
The argument assumes thatf „w(x)…w8(x) approaches zero
in these limits, which is true unlessf (x) is too diver-
gent; similar assumptions are also made for the derivat
of f (x).

The combination of this substitution and the trapezoid
tegration can be recast on a form similar to the one used
Gaussian quadrature formulas~by also using the require
ments limx→10w8(0)50 and limx→1w8(1)50, the two out-
ermost terms have been disregarded!:

E
0

1

f ~x!dx'h (
n51

1/h21

vnf ~xn!, ~B9!

xn5w~hn!, vn5w8~hn!, ~B10!

where h is a chosen step length. For each step length
values ofvn and xn can be pre-calculated with some othe
simple, numerical integration algorithm during the progra
initialization. For the implementation we note that the tw
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quantities should be stored intermixed in one array to ens
good use of the cache memory of the computer.

The integration is performed by iteration, reducingh in
each step, until the relative difference between the res
from two consecutive steps is less than some error boune.
A major benefit inherited from the trapezoid integration
that if h is reduced with a factor of 2 in each step, the p
vious computed approximation for the next iteration can
reused. This halves the number of function evaluatio
needed.

Despite the fact that Eq.~B9! formally does not include
the end points of the interval~i.e., it is formally open!, the
nature of the functionw(x) brings x1 and xn21 extremely
close to 0 and 1~i.e., for practical purposes the formula is
be regarded as closed!. In case the end points of the interv
must be avoided, the interval of integration can be shru
minimally and open trapezoid integration used on the
small parts.

For the integrals in this work the described integrati
algorithm shows both a rapid convergence and a very st
behavior. In tricky situations, where the integrand is not e
tirely smooth, the algorithm results in a trapezoid integrat
of a nonperiodic function, and thus converges~although
slowly!. However, for the cases where the integrand is w
behaved and smooth~as it should be!, the convergence is
much more rapid, imitating the behavior seen with us
trapezoid integration of whole periods of periodic function
For the nonparallel case the results and speed of the
scribed integration method for integrals relevant for th
work were compared with theQUADPACK ~Ref. 33! routine
‘‘dqag.’’ That routine seems to be significantly slower, r
quiring on the average more evaluations of the integrand

APPENDIX C:
COMPUTATIONAL FORMULAS FOR THE HO

The HO formulas obtained by combining Eqs.~26! and
~A1!–~A3! look roughly similar to the MG formulas but ar
computable with less elaborate numerical methods. The
orbitals are enumerated by the discrete index of the Herm
polynomials, making theh,h8 sums of Eqs.~A1! and ~A2!
range from 0 toN21. The number of occupied orbitals,N,
is related to our input parametersl̄, p̄ by

N5 b 1

2A2l̄ p̄2
1

1
2 c, ~C1!

wherebxc means the highest integer<x.
The speed of the calculations is increased by using

explicit expression for the Hermite polynomials inz50.
Furthermore, the functiong(r ,r 8) is treated as in Appendix
A, but without a lookup table, i.e., the function values a
computed directly when needed.

All integrations in the HO model are performed by
straightforward implementation of adaptive Gaussian in
gration. The reason for not using the algorithm described
Appendix is that the HO model calculations were finish
before the need for a parallelized integration algorithm
the MG case was discovered. This adds to the independ
7-16
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of the two models, and makes the observation that comp
values for the MG model approach values for the HO mo
an additional verification of our numerical methods.

APPENDIX D: CALCULATIONAL FORMULAS
FOR THE GRADIENT AND LAPLACIAN

The density is calculated on a fully dimensionless for
For example, for the MG:

n̄m~ z̄!5
nm~ z̄!

nu
. ~D1!
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